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Motivation

 Tremendous increase in graph data and apps
— Graph mining on web graph and social network
— Real-time graph query, e.g., knowledge graph

* Opportunities for research on graph engine
— New scenario: analysis on a fast changing graph
— Multicore server: graph-aware optimization



* Kineograph: taking the pulse of a fast-changing
and connected world (Eurosys’12)

* Grace: managing large graphs on multi-cores
with graph awareness (USENIX ATC’12)



Kineograph Background

* The age of real-time data— [E§ | | F3

— New time-sensitive data generated continuously

— Rich connections between entities

 Example: mention graph
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System Challenges

High rate of graph updates

Consistent graph data

Static graph algorithm vs. changing graph
Timely results reflecting graph updates
Fault tolerant



Kineograph: In-Memory Graph Store

Scalable and fault-tolerant distributed
system for nearline graph mining O ——

Zeitgenossische

* Built-in support for incremental computation stz
— Kineograph API for various graph algorithms

— Examples:
* InfluenceRank
* Approximate all-pairs shortest paths
* K-exposure (hash-tag histogram)

 Epoch commit protocol
— Fast graph update and consistent snapshot production
— Static graph algorithm operating over a snapshot
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Graph Update/Compute Pipeline

* Multiple parallel data sources
 Graph update in transaction

— E.g., tweet - updates of multiple edges/vertices, cross-partition operations

* Produce a consistent global snapshot periodically
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System Architecture
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Key decision: separation of graph construction from graph computation
* Give rise to the epoch commit protocol

* Enable simple and separate fault tolerant mechanisms for graph update (quorum-
based replication) and graph computation (check-point and primary backup) 8



Ingest

Graph nodes

Epoch Commit Protocol

Progress table

_____

!
S, l
Global tx
vector
3|15 ]|s;
| Epoch specified by progress
table and snapshooter
6| 8|s.



Incremental Graph Computation
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other vertices
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Selected Results

 Graph update rate
— 180k tweet/s: 20x+ of Twitter peak record (Oct.2011)
* Incremental Computation
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Contributions

* Kineograph
— A system that computes timely results on a fast
changing graph
— Separate graph update mechanism that supports
high-throughput graph update and
produces consistent snapshots

— An efficient graph engine that supports
incremental computation

* Implementation validates design goals

— 100k+ sustainable update throughput and 2.5-minute
timeliness with 40 machines



Grace

* A graph management and processing system
— In-memory, single machine

— Graph-specific and multicore-specific
optimizations

* Orders of magnitude faster than existing systems
— Berkeley DB, SQL-server, and Neo4;



An Overview of Grace

v = GetVertex(ld)
for (i=0; i<v.degree;i++)
neigh=v.GetNeighbor(i)

Iterative Programs
(e.g., PageRank)

Grace API
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Graph-Aware Data Structures
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Data Structures in a Partition

* Efficient, no indirect key-value lookup when following edges
* Enable graph-aware optimization on data locality



Graph-Aware Partitioning & Placement

* Partitioning
— Decrease cross-core communication & increase parallelism
— Heuristic-based:

e place v in a partition with more neighbors while balancing # of vertex across
partitions, i.e., for each v, minimize |Partition )\ Neighbor(v)|

— Provides an extensible library
* Metis, hash partitioning

* Placement
— Better data locality: Place tightly connected vertices close
* likely w/in one page and even CPU cache-line (during computation)
— Spectral rearrange:
* giving highly connected vertices similar score
e arrange vertices in the order sorted by score



Platform for Parallel Iterative Computations

BSP (bulk synchronous parallel) model

Core O, Part O Core 1, Part 1

cache line



Platform for Parallel Iterative Computations
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Platform for Parallel Iterative Computations
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Platform for Parallel Iterative Computations

* Update Batching

Core O, Part O Core 1, Part 1

cache line



Comparing Grace, BDB, and Neo4;j

10000 -
—~ 1000
i)
£ 100
= m BDB
o 10
'c H Neodj
S 1
[~ B Grace

o
Y

¢ &8
& &

Orders of magnitude faster than existing alternatives
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Conclusion

e Grace explores graph-specific and multi-core
specific optimizations

e Careful vertex placement in memory gave
good improvements

e Partitioning and updates batching worked in
most cases, but not always



Backup



Kineograph Fault Tolerance

* Ingest node failure

— Each ingest node i assigns an incarnation number along with each tx no. [c, s]
and marks it in the global progress table

— Avresurrected ingest node j seals c; at s;, and uses new incarnation number
c+1:any op [c, s] (s >s,) is discarded

* Graph node failure

— Graph data : quorum-based replication, i.e., graph updates sent to k replicas
and can tolerate f failures (k >= 2f+1)

— No replication during computation: rollback and re-compute; computation
results are replicated using primary backup

e QOthers: Paxos-based solution

— Maintain progress table, coordinate computation, monitor machines, tracking
replicas, etc.



Evaluation

e System implementation
— Platform LoC: 16K~ C#

— 3 Apps LoC: 1.5K~ C# (Influence Rank, approximate all-
pair shortest path, hashtag-histogram)

— 40+ servers, “100M tweets

* Key performance numbers

— Graph update rate: up to 180K tweets/s, 20+ times
more than Twitter peak record (Oct.2011)

— Influence Rank average timeliness over 8M vertices,
29M edges: ~2.5 minute
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Programming with Kineograph

Updatelnfluence (v) { //event handling callback for a vertex
val newRank = (1+p*v[“influence"]) / v.numOutEdges()
foreach(e in vertex.outEdges()) {

val oldRank = v.("influence", e.target)
val delta = |newRank — oldRank|
if (delta > threshold)
v.pushDeltaTo(“influence", e.target, delta)
} //pushDeltaTo propagates changes to other vertices
} //Updatelnfluence() triggered at changed vertices only
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Snapshot Consistency

* Guarantee atomicity

— All or none of the operations in a tx are included in a
snapshot

e Global tx vector

— A consensus on the set of tx to be included in a global
snapshot

* Applying graph updates
— Impose an artificial order within the set of tx: e.g.,
apply ops of s, first, and s,, and so on.

— Assumption: cross-partition ops do not have causal
dependency



Applications

Graph construction by extracting tweets

— Mention graph: A @ B: A->B

— HashTag graph: U posts a tweet that has #tagA: U->tagA
Influence Rank: computing user influence

— Calculate “PageRank” on a mention graph
Approximate shortest paths

— Shortest path between two vertices S(A,B): S(A, LandmarkA)+S(B,
LandmarkB)

K-Exposure: calculating hashtag exposure histogram (WWW’11)

— |If at time t user U posts a tweet S containing hash tag H, K(S) is the
number of U’s neighbors who post tweets containing H before t



Why focus on single machine?

* Single machine scale increases largely
— Large main memory attached (10s~1000s GB)
— Many cores (12~48, and even more)

— Run workloads that are traditionally run on distributed
systems

e Easy to deploy
— No tricky distributed configurations

e Distributed graph system needs efficient local engine



Evaluation

Graphs:
- Web (v:88M, e:275M), sparse
- Orkut (v:3M, e:223M), dense

Workloads:
- N-hop-neighbor queries, BFS, DFS, PageRank, Weakly-
Connected Components, Shortest Path

Architecture:
- Intel Xeon-12 cores, 2 chips with 6 cores each
- AMD Opteron-48 cores, 4 chips with 12 cores each

Questions:

- How well partitioning and placement work?

- How useful are load balancing and updates batching?
-  How does Grace compare to other systems?



