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Motivation 

• Tremendous increase in graph data and apps 

– Graph mining on web graph and social network 

– Real-time graph query, e.g., knowledge graph 

 

• Opportunities for research on graph engine 

– New scenario: analysis on a fast changing graph 

– Multicore server: graph-aware optimization 
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• Kineograph: taking the pulse of a fast-changing 
and connected world (Eurosys’12) 

 

• Grace: managing large graphs on multi-cores 
with graph awareness (USENIX ATC’12) 

3 



Kineograph Background 

• The age of real-time data – 

– New time-sensitive data generated continuously 

– Rich connections between entities 

• Example: mention graph 
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Goal: Compute Global 
Properties on the 
Changing Graph 



System Challenges 

• High rate of graph updates 

• Consistent graph data 

• Static graph algorithm vs. changing graph 

• Timely results reflecting graph updates 

• Fault tolerant 
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Kineograph: In-Memory Graph Store 

Scalable and fault-tolerant distributed   
system for nearline graph mining 
• Built-in support for incremental computation 

– Kineograph API for various graph algorithms 
– Examples:  

• InfluenceRank  
• Approximate all-pairs shortest paths 
• K-exposure (hash-tag histogram) 

• Epoch commit protocol  
– Fast graph update and consistent snapshot production 
– Static graph algorithm operating over a snapshot 
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Graph Update/Compute Pipeline 
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• Multiple parallel data sources 

• Graph update in transaction  
– E.g., tweet  updates of multiple edges/vertices, cross-partition operations 

• Produce a consistent global snapshot periodically 
 



System Architecture 
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Key decision: separation of graph construction from graph computation 

• Give rise to the epoch commit protocol 

• Enable simple and separate fault tolerant mechanisms for graph update (quorum-
based replication) and graph computation (check-point and primary backup) 8 
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Epoch Commit Protocol 

s1 

4 6 7 

1 2 4 s1 

sn 

Partition u 

5 6 8 

2 3 5 s1 

sn 

Partition v 

0 

… 

s1 

… 

sn 3 

Progress table 

Ingest nodes 

Graph nodes Epoch specified by progress 
table and snapshooter 

Global tx 
vector 

Snapshooter 
sn 

… 

… 

1 2 3 

4 7 
• No locking mechanisms required for global order 
• Defer decisions to master snapshooter 

• Consensus on a set of ops and a serializable execution order 

• Limitation: no cross-partition dependency across ops 
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Incremental Graph Computation 
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Selected Results 

• Graph update rate 

– 180k tweet/s: 20x+ of Twitter peak record (Oct.2011) 

• Incremental Computation 
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Contributions 

• Kineograph 
– A system that computes timely results on a fast 

changing graph 
– Separate graph update mechanism that supports  

high-throughput graph update and  
produces consistent snapshots 

– An efficient graph engine that supports  
incremental computation 

• Implementation validates design goals 
– 100k+ sustainable update throughput and 2.5-minute 

timeliness with 40 machines 
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Grace 

• A graph management and processing system 

– In-memory, single machine 

– Graph-specific and multicore-specific 
optimizations 

 

• Orders of magnitude faster than existing systems 

– Berkeley DB, SQL-server, and Neo4j 
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v = GetVertex(Id) 
for (i=0; i<v.degree;i++) 
   neigh=v.GetNeighbor(i) 

Grace API 
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An Overview of Grace 
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Graph-Aware Data Structures 
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• Efficient, no indirect key-value lookup when following edges 

• Enable graph-aware optimization on data locality 

Part 0 Part 1 
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Graph-Aware Partitioning & Placement 

• Partitioning 
– Decrease cross-core communication & increase parallelism 

– Heuristic-based:  

• place v in a partition with more neighbors while balancing # of vertex across  
partitions, i.e., for each v, minimize |Partitioni\ Neighbori(v)| 

– Provides an extensible library 

• Metis, hash partitioning 

 

• Placement 
– Better data locality: Place tightly connected vertices close 

• likely w/in one page and even CPU cache-line (during computation) 

– Spectral rearrange:  

• giving highly connected vertices similar score 

• arrange vertices in the order sorted by score 
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Platform for Parallel Iterative Computations 

BSP (bulk synchronous parallel) model 
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Platform for Parallel Iterative Computations 
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Platform for Parallel Iterative Computations 
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Platform for Parallel Iterative Computations 

• Update Batching 
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Comparing Grace, BDB, and Neo4j 
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Orders of magnitude faster than existing alternatives 
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Conclusion 

• Grace explores graph-specific and multi-core 
specific optimizations 

• Careful vertex placement in memory gave 
good improvements 

• Partitioning and updates batching worked in 
most cases, but not always 
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Backup 
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Kineograph Fault Tolerance 

• Ingest node failure 

– Each ingest node i assigns an incarnation number along with each tx no. [ci, si] 
and marks it in the global progress table 

– A resurrected ingest node i seals ci at si, and uses new incarnation number 
ci+1: any op [ci, s] (s > si) is discarded 

• Graph node failure 

– Graph data : quorum-based replication, i.e.,  graph updates sent to k replicas 
and can tolerate f failures (k >= 2f+1) 

– No replication during computation: rollback and re-compute; computation 
results are replicated using primary backup 

• Others: Paxos-based solution 

– Maintain progress table, coordinate computation, monitor machines, tracking 
replicas, etc. 
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Evaluation 

• System implementation 
– Platform LoC: 16K~ C# 

– 3 Apps LoC: 1.5K~ C# (Influence Rank, approximate all-
pair shortest path, hashtag-histogram) 

– 40+ servers, ~100M tweets 

• Key performance numbers 
– Graph update rate: up to 180K tweets/s, 20+ times 

more than Twitter peak record (Oct.2011) 

– Influence Rank average timeliness over 8M vertices, 
29M edges: ~2.5 minute 
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Failure Recovery 
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Programming with Kineograph 

UpdateInfluence (v) { //event handling callback for a vertex 

     val newRank = (1+p*v*“influence"+) / v.numOutEdges() 

     foreach(e in vertex.outEdges()) { 

        val oldRank = v.(”influence", e.target) 

        val delta = |newRank – oldRank| 

        if (delta > threshold) 

         v.pushDeltaTo(“influence", e.target, delta) 

    }  //pushDeltaTo propagates changes to other vertices 

} //UpdateInfluence() triggered at changed vertices only 
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Snapshot Consistency 

• Guarantee atomicity 
– All or none of the operations in a tx are included in a 

snapshot 

• Global tx vector 
– A consensus on the set of tx to be included in a global 

snapshot 

• Applying graph updates 
– Impose an artificial order within the set of tx: e.g., 

apply ops of s1 first, and s2, and so on. 
– Assumption: cross-partition ops do not have causal 

dependency 
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Applications 

• Graph construction by extracting tweets 

– Mention graph: A @ B: A->B 

– HashTag graph: U posts a tweet that has #tagA:  U->tagA 

• Influence Rank: computing user influence 

– Calculate “PageRank” on a mention graph 

• Approximate shortest paths 

– Shortest path between two vertices S(A,B): S(A, LandmarkA)+S(B, 
LandmarkB) 

• K-Exposure: calculating hashtag exposure histogram (WWW’11) 

– If at time t user U posts a tweet S containing hash tag H, K(S) is the 
number of U’s neighbors who post tweets containing H before t 
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Why focus on single machine? 

• Single machine scale increases largely 

– Large main memory attached (10s~1000s GB) 

– Many cores (12~48, and even more) 

– Run workloads that are traditionally run on distributed 
systems 

 

• Easy to deploy 

– No tricky distributed configurations 

 

• Distributed graph system needs efficient local engine 
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Graphs: 
- Web  (v:88M, e:275M), sparse 
- Orkut (v:3M, e:223M), dense 
 
Workloads:  
- N-hop-neighbor queries, BFS, DFS, PageRank, Weakly-

Connected Components, Shortest Path 
 
Architecture: 
- Intel Xeon-12 cores, 2 chips with 6 cores each 
- AMD Opteron-48 cores, 4 chips with 12 cores each 

 
Questions: 
- How well partitioning and placement work? 
- How useful are load balancing and updates batching? 
- How does Grace compare to other systems? 

Evaluation 
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