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Social Tie Analysis 
—Computational aspect 
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Iceberg Model for Social Network 

? 
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Iceberg Model for Social Network 

Information 

Difussion 

Collective 

Intelligence 

Tie 

Influence 

Traits and 

Motivates 
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KDD 2010, PKDD 2011 (Best Paper Runnerup), WSDM 2012, DMKD 

Inferring Social Ties 

? 
Family 

Friend 
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Real social networks are complex... 

• Nobody exists only in one social network. 

– Public network vs. private network 

– Business network vs. family network 

• However, existing networks (e.g., Facebook and Twitter) 

are trying to lump everyone into one big network 

– FB tries to solve this problem via lists/groups 

– However… 

• Google+ 

which circle? Users do not take time to create it. 
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Even complex than we imaged! 

• Only 16% of mobile phone users in Europe 

have created custom contact groups 

– users do not take the time to create it 

– users do not know how to circle their friends 

 

• The fact is that our social network is black-

… 
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Example 1: finding boss in email networks 
(PKDD’11, Best Paper Runnerup)

CEO 

Employee 

How to 

infer 
Manager 

Enterprise email network 

User interactions may form implicit groups  
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Example 2: finding friends in mobile networks 

From Home 

08:40 

From Office 

11:35 

Both in office 

08:00 – 18:00 

From Office 

15:20 

From Outside 

21:30 

From Office 

17:55 

Friends 
Other 

0.89 

0.77 

0.98 

0.63 0.70 

0.86 
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Challenges 

From 

Home 

08:40 

From 

Office 

11:35 

Both in office 

08:00 – 18:00 

From 

Office 

15:20 

From 

Outside 

21:30 

From Office 

17:55 

Publication network 

Mobile communication network 

Twitter’s following network 

- What are the fundamental forces behind? 

- Can we automatically infer the type of social ties? 
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Networks 

• Epinions a network of product reviewers: 131,828 nodes 

(users) and 841,372 edges 

– trust relationships between users 

• Slashdot: 82,144 users and 59,202 edges  

– ―friend‖ relationships between users 

• Mobile: 107 mobile users and 5,436 edges 

– to infer friendships between users 

• Coauthor: 815,946 authors and 2,792,833 coauthor 

relationships 

– to infer advisor-advisee relationships between coauthors 

• Enron: 151 Enron employees and 3572 edges 

– to infer manager-subordinate relationships between users. 

Undirected network 

Directed network 
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Problem Formulation 

Input: G=(V,EL,EU,RL,W)     

V: Set of Users 

EL,RL: Labeled relationships 

Friend 

Other 

EU: Unlabeled relationships 

? 
? 

Input: 

G=(V,EL,EU,RL,W) 

Output: 

f: GR  

Partially 
Labeled 
Network ? 

Other 
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Basic Idea 

Other 

? 
? 

V1 

r24 

V3 

V2 

r45 

r56 

Friend 

? 

? 

UserNode 

RelationshipNode 
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y12

f(x1,x2,y12)

y21

y45

y34

relationships

PLP-FGM

g (y12, y34)
y12=advisor

v1

v2

v4
v3

v5

Input: Social Network

r12

r45

r34
r34

y34

y21=advisee

y34=?

y16=coauthor

y34=?

f(x2,x1,y21)

f(x3,x4,y34)

f(x4,x5,y45)

f(x3,x4,y34)

h (y12, y21)

g (y45, y34)

g (y12,y45)

r21

 

Partially Labeled Pairwise 

Factor Graph Model (PLP-FGM) 

Map relationship to nodes in model 

 

Attribute factors f 

  

Correlation factor g 

 
Constraint factor h Partially Labeled 

Model 

Input Model 

 

Latent Variable 

Example: 

   Call frequency between two users? 

Example: 

   A makes call to B immediately after the call to C. 

y12=Friend 
 

y21=Friend 

y16=Other 

 

Problem: 

    For each relationship, identify which type  

has the highest probability? 

Wenbin Tang, Honglei Zhuang, and Jie Tang. Learning to Infer Social Ties in Large Networks. In 

ECML/PKDD'2011. pp. 381-397. (Best Student Paper Runner-up) 
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Solutions(con’t) 

• Different ways to instantiate factors 

– We use exponential-linear functions 

• Attribute Factor:  

 

 

• Correlation / Constraint Factor: 

 

 

 

 
 

– Log-Likelihood of labeled Data: 
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Learning Algorithm 

• Maximize the log-likelihood of labeled relationships 

 

 

Gradient Ascent Method 

 
Expectation Computing 

Loopy Belief Propagation 
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Still Challenges? 

 

Questions: 
  - How to obtain sufficiently training data? 

  - Can we leverage knowledge from other network? 
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Distributed Learning 

Optimize 

with Gradient 

Descent 

Compute 

Gradient 

via LBP 

 
 

 
 

 

 

 

  

 

 
 

 

 

 
 

Graph Partition by Metis 

Master-Slave Computing 
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Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous 

Networks. In WSDM'2012. pp. 743-752. 

Inferring Social Ties Across Networks  

Adam

Bob

Chris

Danny

Product 1

Adam

Bob

Chris

Danny

distrust trust

trust

distrust

From Home

08:40

From Office

11:35

Both in office

08:00 – 18:00

From Office

15:20

From Outside

21:30

From Office

17:55

Reviewer network

Communication network

Knowledge 

Transfer for 

Inferring 

Social Ties

Input: Heterogeneous Networks Output: Inferred social ties in 

different networks

Family

Colleague

Colleague

Colleague Friend

Friend

review

review

Product 2
review

review

What is the knowledge to 

transfer? 

Epinions 

Mobile 
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Social Theories 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

B C

A

friend

fr
ie

nd

friend

B C

A

non-friend

fr
ie

nd

non-friend

B C

A

non-friend

fr
ie

nd

friend

B C

A

non-friend

no
n-

fr
ie

nd

non-friend

(A) (B) (C) (D)

Observations:  

(1) The underlying networks are unbalanced; 

(2) While the friendship networks are balanced. 
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Social Theories—Structural hole 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

 

Structural hole 

Observations: Users are more likely (+25-150% 

higher than change) to have the same type of  

relationship with C if C spans structural holes 
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Social Theories—Social status 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

Observations:  99% of triads in 

the networks satisfy the social 

status theory 

Note: Given a triad (A,B,C), let us use 1 to denote the advisor-advisee relationship and 0 colleague relationship. 

Thus the number 011 to denote A and B are colleagues, B is C’s advisor and A is C’s advisor. 
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Social Theories—Two-step-flow 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

OL : Opinion leader;      

OU : Ordinary user. 

 

Observations:  Opinion leaders are 

more likely (+71%-84% higher than 

chance) to have a higher social-status 

than ordinary users. 
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Transfer Factor Graph Model 

y1

f (s1, u2,y1)

y2

y6

y5

Observations

TrFG model

y1=1

v1

v2

v3

v4
v6

v5

Input: social network

u1, s1

u2, s2

u6, s6

u5, s5
u4, s4

y4

y2=?
y4=?

y6=?

f (u2, s2,y2)

f (u4, s4,y4)

f (s6, u6,y6)

f (u5,s5, y5)

h (y3, y4, y5)

2

4 6

5

1

y5=1

|

3

y3

u3, s3

f (s3, s3,y3)

h (y1, y2, y3) y3=0

(v2, v1)

(v2, v3)

(v4, v3)

(v4, v5)

(v6, v5)

(v4, v6)

y1

f (s1, u2,y1)

y2

y6

y5

Observations

TrFG model

y1=1

v1

v2

v3

v4
v6

v5

Input: social network

u1, s1

u2, s2

u6, s6

u5, s5
u4, s4

y4

y2=?
y4=?

y6=?

f (u2, s2,y2)

f (u4, s4,y4)

f (s6, u6,y6)

f (u5,s5, y5)

h (y3, y4, y5)

2

4 6

5

1

y5=1

|

3

y3

u3, s3

f (s3, s3,y3)

h (y1, y2, y3) y3=0

(v2, v1)

(v2, v3)

(v4, v3)

(v4, v5)

(v6, v5)

(v4, v6)

Bridge 

via social 

theories 

Coauthor 

network 

mobile 
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Mathematical Formulation 

Features defined in 

source network 

Triad-based features shared 

across networks 

Features defined in 

target network 

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous 

Networks. In WSDM'2012. pp. 743-752. 
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Experiments 

• Data sets 

– Epinions: 131,828 nodes (users) and 841,372 edges 

– Slashdot: 82,144 users and 59,202 edges  

– Mobile: 107 mobile users and 5,436 edges 

– Coauthor: 815,946 authors and 2,792,833 coauthor 

relationships 

– Enron: 151 Enron employees and 3572 edges 

• Comparison methods 

– SVM and CRF are two baseline methods 

– PFG is the partially-labeled factor graph model 

– TranFG is the transfer–based factor graph model 
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Results – undirected networks 

SVM and CRF are 

two baseline 

methods 

PFG is the 

proposed 

partially-labeled 

factor graph 

model 

TranFG is the 

proposed 

transfer–based 

factor graph 

model. 

 



27 

Results – directed networks 

SVM and CRF are 

two baseline 

methods 

PFG is the 

proposed 

partially-labeled 

factor graph 

model 

TranFG is the 

proposed 

transfer–based 

factor graph 

model. 
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Factor Contribution Analysis 

SH-Structural hole; 

SB-Social balance. 

 

Undirected Network 

OL-Opinion leader; 

SS-Social status. 

 

Directed Network 
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CIKM 2011 

Parasocial vs. Reciprocal 

Lady Gaga You Lady Gaga You 

? 
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100% 

30% 

1% 

60% 

Who will follow you back? 

On Twitter… 

Ladygaga 

? 

? 

? 

? 

Shiteng 

Obama Huwei 

JimmyQiao 
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Local Global 

Geographic Distance 

vs 

John E. Hopcroft, Tiancheng Lou, and Jie Tang. Who Will Follow You Back? Reciprocal 

Relationship Prediction. In CIKM'2011. pp. 1137-1146. (alphabet author order) 
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Homophily 

Link homophily: users 

who share common links 

will have a tendency to 

follow each other. 

Status homophily: 
Elite users have a much 

stronger tendency to 

follow each other. 
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Interaction 

Retweet vs. reply  

 

*Retweeting seems to be more helpful 
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Structural Balance 

• Structural balance 

– Reciprocal relationships 
are balanced (88%); 

– Parasocial relationships 
are not (only 29%). 

(A) and (B) are balanced, but (C) and (D) are not. 
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Triad Factor Graph (TriFG) 

y1

f (v1
u, v1

s, y1)

y2

y6

y5

Observations

TriFG model

v1

v2

v3

v4
v6

v5

v1
u, v1

s

v2
u, v2

s

v6
u, v6

s

v5
u, v5

sv4
u, v4

s

y4

y4=?

f (v2
u, v2

s, y2)

f (v4
u, v4

s ,y4)

f (v6
u, v6

s ,y6)

f (v5
u, v5

s, y5)

h (y3, y4, y5)

2

4 6

5

1

y5=non-friend

3

y3

v3
u, v3

s

f (v3
u, v3

s, y3)

h (y1, y2, y3) y3=?

(v2, v1)

(v2, v3)

(v4, v3)

(v4, v5)

(v6, v5)

(v4, v6)

y1=friend

y2=friend

y6=non-friend

Input: Mobile Network
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Experiments 
• Huge sub-network of twitter 

– 13,442,659 users and 56,893,234 following links. 

– Extracted 35,746,366 tweets. 

• Dynamic networks 

– With an average of 728,509 new links per day. 

– Averagely 3,337 new follow-back links per day. 

– 13 time stamps by viewing every four days as a time stamp 

 Data Algotithm Precision Recall F1Measure Accuracy 

 

Test 

Case  

1 

SVM 0.6908 0.6129 0.6495 0.9590 

LRC 0.6957 0.2581 0.3765 0.9510 

CRF 1.0000 0.6290 0.7723 0.9770 

TriFG 1.0000 0.8548 0.9217 0.9910 

 

Test 

Case 

2 

SVM 0.7323 0.6212 0.6722 0.9534 

LRC 0.8333 0.3030 0.4444 0.9417 

CRF 1.0000 0.6333 0.7755 0.9717 

TriFG 1.0000 0.8788 0.9355 0.9907 
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Effect of Time Span 

• Distribution of follow back time 

– 60% for next-time stamp; 

– 37% for following 3 time stamps.  

• Different settings of the time span 

– Performance drops sharply when two or less; 

– Acceptable for three time stamps. 
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Case Study 
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Triadic Closure 

Lady Gaga 

You 

Lady Gaga 

You 

? 

Shiteng 
Shiteng 
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Triadic Closure 

0.5% 

90% 

1% 

60% 
Ladygaga 

Shiteng 

Obama 
Huwei 

JimmyQiao 

0.6% 

50% 
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Triad Status 

• P(1XX) > P(0XX). Elites users play a more important role to form the triadic closure. The 

average probability of 1XX  is three times higher than that of 0XX. 

• P(X0X) > P(X1X). Low-status users act as a bridge to connect users so as to form a 

closure triad. The likelihood of X0X is 2.8 times higher than X1X. 

• P(XX1) > P(XX0). The rich gets richer. This phenomenon validates the mechanism of 

preferential attachment [Newman 2001]. 

Elite User(1) 

Ordinary User(0) Elite User(1) 

(101) 
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Triad Closure Prediction Result 

Data Algotithm Precision Recall F1Measure 

 

Test 

Case  

1 

SVM 0.0870 0.1429 0.1081 

LRC 0.0536 0.1404 0.0759 

CRF-balance 0.0208 0.0436 0.0282 

CRF 0.1111 0.0870 0.0976 

wTriFG 0.3333 0.0373 0.0671 

TriFG  0.4545 0.2174 0.2941 

 

Test 

Case 

2 

SVM 0.2000 0.2222 0.2105 

LRC 0.1071 0.1667 0.1304 

CRF-balance 0.0909 0.0556 0.0690 

CRF 0.2222 0.2222 0.2222 

wTriFG 0.5000 0.0556 0.1000 

TriFG 0.8571 0.3333 0.4800 
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Follow Influence 

Lady Gaga You 
Lady Gaga 

You 

? 

Shiteng 
Obama 

? 
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Will the ―following‖ be Influenced? 

0.5% 

90% 

1% 

60% 
Ladygaga 

? 

? 

? 

? 
Shiteng 

Obama 
Huwei 

JimmyQiao 

30% 

40% 

5% 

50% 

2% 

Large neighbors, but 

may not be influenced  
Few neighbors, 

but may be 

significantly 

influenced 
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Influence Test 

A 

B C 

t t-1 

A 

B C 

t-1 t-1 

? ? 

Question:  
Whether there exist follow influence? 

In which kind of triad the influence is significant? 

Method: 
Compare the same kind of triad with different timestamp. 

1 2 

Assumption: 
If P1(B->C) is much larger than P2(B->C), then influence exists. 
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Test Result 

P1(B->C)=0.5%  

P2(B->C)=0.1% 

P1(B->C)=14.4%  

P2(B->C)=0.1% 

P1(B->C)=0.02%  

P2(B->C)=0.02% 

P1(B->C)=0.02%  

P2(B->C)=0.02% 

Two categories of triads have significant influence, 

compared with two other categories 

Attract more 

followers 

Follow 

More 

No influence No influence 

… … 
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More… 

P1(B->C)=4.1% P1(B->C)=0.5% > 

P1(B->C)=81.7% P1(B->C)=14.4% > 

P(B->C) is significantly boosted when the reversed follow link is pre-formed 

Question: Are there any other factors that can boost P(B->C)? 
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Structural Balance 

P1(B->C)=4.1% 
P1(B->C)=0.5% > 

P1(B->C)=81.7% P1(B->C)=14.4% > P1(B->C)=86.8% 

P1(B->C)=15.9% > 

> 

P(B->C) is significantly boosted when the the resultant triad satisfies the balance theory 
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Application: Follow Influence Maximization 

0 10 20 30 40 50 60
0

10

20

30

40

50

 

 

Influence

Followback

Random

• Influence: Select seeds which can influence most users 

 

• Followback: Select seeds which can follow back with the highest probabilities 

 

• Random:  Select seeds randomly 
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Summary 

• Computational models for social tie analysis 

– Inferring social tie 

– Parasocial ->Reciprocal 

– Tradic closure 

– Follow influence  

• This is just a start for social tie analysis  

– How social tie influences user behaviors? 

– How social tie influences the network structure? 

– … 
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Thank you！ 

QA? 

Data & Code:  

http://arnetminer.org/lab-datasets/soinf 

http://arnetminer.org/stnt 

http://arnetminer.org/lab-datasets/soinf/
http://arnetminer.org/lab-datasets/soinf/
http://arnetminer.org/lab-datasets/soinf/
http://arnetminer.org/lab-datasets/soinf/
http://arnetminer.org/stnt
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Link Homophily 

When there are no common friends between B and C, P(B->C) becomes much 

larger than with common friends between B and C. 

 

- People may prefer to follow a totally unfamiliar user for the diversity of their 

community. 

P(B->C) 

48 kinds of triads 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 

Without common friends 

With common friends 
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Link Homophily 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

1 2 3 4 5 6 7 8 9 10 11 12 

Without Common friends 

With common friends 

P(B->C) 

12 kinds of triads in category ―Attract more followers‖  

When there are common friends between A and B, P(B->C) becomes much 

larger than without common friends between A and B. 

 

- Two related people are much more likely to follow the same user influenced 

by each other if they share common friends than usual. 


