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Motivation 

VS. 

Social behavior 
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Emotion stimulates the mind 3000 times quicker 

than rational though!!! 

It's an emotional world we live in! 

 

Six degree vs. Three degree [Nature; BMJ] 
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Motivation: A Happy System 

Can we predict users’ 

activities and emotion? 
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Motivation: Inferring Social Ties 

From Home 

08:40 

From Office 

11:35 

Both in office 

08:00 – 18:00 

From Office 

15:20 

From Outside 

21:30 

From Office 

17:55 

Friends 
Other 
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Motivation: RideSharing 
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MoodCast: Emotion Prediction via Dynamic 

Continuous Factor Graph Model 

 ICDM’10, IEEE Trans. on Affective Computing’11 
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Happy System 

Can we predict users’ 

emotion? 
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Observations 

 

Location correlation 

(Red-happy) 

Activity correlation  
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Observations (cont.) 

Social correlation 

(a) Social correlation (a) Implicit groups by emotions 

Temporal correlation 
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Observations (cont.) 

Calling (SMS) correlation 

We should not split 

the data into different 

time windows … 
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MoodCast: Dynamic Continuous Factor 

Graph Model 

Jennifer

Happy

Happy

location

Neutral
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call
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Allen
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Jennifer today

Jennifer 

yesterday

?

Jennifer  

tomorrow

MoodCast

Predict

Attributes f(.)

Temporal 

correlation h(.)

Social correlation g(.)

Our solution 
 

1. We directly define continuous feature function; 
 

2. Use Metropolis-Hasting algorithm to learn the factor graph model. 
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Problem Formulation 

Gt =(V, Et, Xt, Yt) 

Attributes: 

 - Location: Lab 

 - Activity: Working 

Emotion: Sad 

Learning Task: 

Time t 

Time t-1, t-2… 
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Dynamic Continuous Factor Graph Model 

Time t’ 

Time t 
     

 : Binary function 
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Model Learning 

Temporal 

Social 

Attribute 
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MH-based Learning algorithm 
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• Data Set 

 

 

 
 

• Baseline 
– SVM 

– SVM with network features 

– Naïve Bayes 

– Naïve Bayes with network features 

• Evaluation Measure: 

Precision, Recall, F1-Measure 

#Users Avg. Links #Labels Other 

MSN 30 3.2 9,869 >36,000hr 

LiveJournal 469,707 49.6 2,665,166 

Experiment 
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Performance Result 
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Factor Contributions 

• All factors are important for predicting user emotions 

 

Mobile 
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PKDD 2011 (Best Paper Runnerup), WSDM 2012 

Inferring Social Ties in Mobile Networks 
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Real social networks are complex... 

• Nobody exists only in one social network. 

– Public network vs. private network 

– Business network vs. family network 

• However, existing networks (e.g., Facebook and Twitter) are 

trying to lump everyone into one big network 

– FB tries to solve this problem via lists/groups 

– However… 

• Google+ 

which circle? Users do not take time to create it. 
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Even complex than we imaged! 

• Only 16% of mobile phone users in Europe 

have created custom contact groups 

– users do not take the time to create it 

– users do not know how to circle their friends 

 

• The fact is that our social network is black-

… 
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Problem Formulation 

Input: G=(V,EL,EU,RL,W)     

V: Set of Users 

EL,RL: Labeled relationships 

Friend 

Other 

EU: Unlabeled relationships 

? 
? 

Input: 

G=(V,EL,EU,RL,W) 

Output: 

f: GR  

Partially 
Labeled 
Network ? 

Other 
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Basic Idea 
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y12

f(x1,x2,y12)

y21

y45

y34

relationships

PLP-FGM

g (y12, y34)
y12=advisor

v1

v2

v4
v3

v5

Input: Social Network

r12

r45

r34
r34

y34

y21=advisee

y34=?

y16=coauthor

y34=?

f(x2,x1,y21)

f(x3,x4,y34)

f(x4,x5,y45)

f(x3,x4,y34)

h (y12, y21)
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r21

 

Partially Labeled Pairwise 

Factor Graph Model (PLP-FGM) 

Map relationship to nodes in model 

 

Attribute factors f 

  

Correlation factor g 

 
Constraint factor h Partially Labeled 

Model 

Input Model 

 

Latent Variable 

Example: 

   Call frequency between two users? 

Example: 

   A makes call to B immediately after the call to C. 

Problem: 

    For each relationship, identify which type  

has the highest probability? 

y12=Friend 
 

y21=Friend 

y16=Other 
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Solutions(con’t) 

• Different ways to instantiate factors 

– We use exponential-linear functions 

• Attribute Factor:  

 

 

• Correlation / Constraint Factor: 

 

 

 

 
 

– Log-Likelihood of labeled Data: 
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Learning Algorithm 

• Maximize the log-likelihood of labeled relationships 

 

 

Gradient Ascent Method 

 
Expectation Computing 

Loopy Belief Propagation 
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Still Challenges? 

 

Questions: 
  - How to obtain sufficiently training data? 

  - Can we leverage knowledge from other network? 
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Inferring Social Ties Across Networks  
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Input: Heterogeneous Networks Output: Inferred social ties in 

different networks
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review

review
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review

review

What is the knowledge to 

transfer? 
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Social Theories 

• Social balance theory 

• Structural hole theory 
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Social Theories—Structural hole 

• Social balance theory 

• Structural hole theory 

Structural hole 
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Transfer Factor Graph Model 
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Mathematical Formulation 

Features defined in 

different networks 

Triad-based features shared 

across networks 



34 

Data Sets 

• Epinions a network of product reviewers: 131,828 

nodes (users) and 841,372 edges 

– trust relationships between users 

• Slashdot: 82,144 users and 59,202 edges  

– ―friend‖ relationships between users 

• Mobile: 107 mobile users and 5,436 edges 

– to infer friendships between users 
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Results 

Data Set Method Prec. Rec. F1 

Mobile 

SVM 89.83 59.55 71.62 

CRF 94.55 54.17 68.87 

PFG 100.00 59.24 74.40 

Epinions to 

Mobile (40%) 
TranFG 82.39 83.44 82.91 

Slashdot  to 

Mobile (40%) 
TranFG 72.58 85.99 78.72 

SVM and CRF are two baseline methods; 

PFG is the proposed partially-labeled factor graph model; 

TranFG is the proposed transfer–based factor graph model. 
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Varying the percent of the labeled data 

Epinions-to-Mobile Slashdot-to-Mobile 
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Factor contribution analysis 

SH-Structural hole; 

SB-Social balance. 
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Conclusions 

• Moodcast: emotion prediction 

– Emotion stimulates the mind 3000 times quicker 

than rational though; 

– We demonstrate that it is possible to accurately 

predict users’ emotions in mobile network. 

• Inferring social ties 

– different types of social ties have essentially 

different influence on people; 

– By incorporating social theories, our proposed 

model can significantly improve (+4-14%) the 

inferring accuracy. 
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Future Work 

• Emotion: 

– Emotion diffusion in the mobile network; 

– Predicting activities and emotions simultaneously. 

 

• Inferring social ties: 

– Inferring complex relationships between users, e.g., 

family, colleague, manager-subordinate; 

– Active learning for inferring social ties. 
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HP: http://keg.cs.tsinghua.edu.cn/jietang/  

System: http://arnetminer.org 

 

Thanks! 

http://keg.cs.tsinghua.edu.cn/jietang/
http://arnetminer.org/

